(x-5)+x^2/(x+5)=11

Simple and best practice solution for (x-5)+x^2/(x+5)=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)+x^2/(x+5)=11 equation:



(x-5)+x^2/(x+5)=11
We move all terms to the left:
(x-5)+x^2/(x+5)-(11)=0
Domain of the equation: (x+5)!=0
We move all terms containing x to the left, all other terms to the right
x!=-5
x∈R
We get rid of parentheses
x^2/(x+5)+x-5-11=0
We multiply all the terms by the denominator
x^2+x*(x+5)-5*(x+5)-11*(x+5)=0
We multiply parentheses
x^2+x^2+5x-5x-11x-25-55=0
We add all the numbers together, and all the variables
2x^2-11x-80=0
a = 2; b = -11; c = -80;
Δ = b2-4ac
Δ = -112-4·2·(-80)
Δ = 761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{761}}{2*2}=\frac{11-\sqrt{761}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{761}}{2*2}=\frac{11+\sqrt{761}}{4} $

See similar equations:

| 60b=50 | | 0=18x+63 | | 0=18x-63 | | y=-4(7)-23 | | 22x=−11 | | 5x+23x=168 | | 7(6w=-1) | | 7x-4x=168 | | 4y=3 | | 2.6^x=7 | | 2.6^x=35 | | 7•x+30=51 | | 5y=0.5+4 | | 3.8-1.2c=2 | | g/2+11=1 | | 20x+40=40x+2020 | | 20+n=11 | | 2w+3w=46 | | 452q=39,234 | | 452q=39234 | | Q=-5+2p | | x=13/73 | | 8x+13x=6x+25 | | 6x+6=5+9x | | 14x=-294 | | 0,097=0,4a | | 27=11-2/x | | 28-5x=9x+14 | | 4^2(x+5)–11=245 | | (3y+18)°+93°=180 | | 9a-4+3a=9A-24+A | | 2^{c}=642c=64 |

Equations solver categories